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The numerical simulation of cavity flows is far from trivial. CFD studies 

have shown that Large Eddy Simulation (LES) and Detached Eddy Simulation 

(DES) results were in agreement with experimental data [1]. For faster 

computations than LES and DES, Scale Adaptative Simulation (SAS) [2] has been 

successfully validated for square cavities with and without doors [3]. The 

aeroelasticity of stores inside the weapon bay has only recently received attention 

[4], and store trajectory predictions need specialized computational tools. The 

most advanced published works [5,6,7,8] show that the variability of the store 

trajectories can be assessed with computational methods. However, the majority of 

the works with URANS models cannot accurately represent the cavity flow.  LES 

or DES models are seen as more time consuming to perform stochastic studies 

related to the release of stores from within the cavity. 

Figure 1: Roll angle for different store release.        Figure 2: Pitch angle for different store release. 

The CFD solver HMB3 can simulate store releases but also account for the 

aeroelastic deformations of the store. Store releases are carried out using a six 

degrees of freedom (6DoF) model and the overset chimera mesh technique. The 

SAS model is used so that it is possible to compute a large number of releases to 

make a stochastic study. Typically, a store is released at different times to estimate 

the variability of the trajectories [9]. 
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Figure 3: Flowfield during a store release computed with SAS. 

To distinguish the behaviour between all the trajectory components, the 

force and moment signals are processed with the continuous Morlet wavelet 

transform [10]. This is a method for time frequency analysis used to determine 

which frequency bands dominate the structural loads. The components are 

grouped into categories. Trajectory components with a mean close to zero and 

large dispersion (Figure 1 and 4) are only driven by unsteady forces. Their 

scalograms show the larger amplitude for the frequency bands centered on cavity 

modes. The influence of the mean flow is negligible. Trajectory components with 

a mean far from zero and low dispersion (Figure 2 and 4) are driven by the mean 

flow, seen as the frequencies close to zero in the scalograms. 

 

 

 

 

 

 

Figure 4: Scalogram of rolling moment Cl and of pitching moment Cm of a store 

release. Horizontal lines represent the Rossier modes [11] for a cavity length of 

3.59m. 

An aeroelastic module based on modal analysis is also available in HMB3. 

This method uses structural modes computed with NASTRAN and a mesh 

deformation module based on the inverse distance weighting interpolation. The 

complete store including the body and the fins can be simultaneously deformed. 

Furthermore, HMB3 can simulate store released including aeroelasticity. The 

complete paper presents the analysis of the trajectory variability with aeroelastic 

effects. 
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